1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

1
2
3
4
5
6
7
8
GET /indexName/_search
{
"query": {
"查询类型": {
"查询条件": "条件值"
}
}
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
1
2
3
4
5
6
7
8
// 查询所有
GET /indexName/_search
{
"query": {
"match_all": {
}
}
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

1
2
3
4
5
6
7
8
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}

mulit_match语法如下:

1
2
3
4
5
6
7
8
9
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}

1.2.3.示例

match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4 match_phrase

match_phrase:短语匹配

短语匹配,查询比较严格,查询的精度较高。一般需要跟slop偏移量配合使用,增加召回成功率。

比如有文档4条:1.关注我,系统学编程,2.系统学编程,关注我, 3.系统编程,关注我 4, 关注我,间隔系统学编程

那么搜索关注我,系统学就只能搜到1,而match可以查询到所有文档

含义:相比match,更强调多个分词顺序和检索词一致,且连续,都要完整匹配才能检索到。

场景:实战应用中会较多使用,结合slop调整顺序和精度

1.2.5 dis_max

有两条doc数据

1
2
3
4
5
6
7
8
9
10
11
POST /book/_doc/1
{
"body": "elasticsearch filter",
"title": "elasticsearch basic query"
}

POST /book/_doc/2
{
"body": "single value search",
"title": "elasticsearch aggs query"
}

不使用dis_max查询

得到的结果是: 相关性得分缺失文档1高于文档2

1
2
3
4
5
6
7
8
9
10
11
POST /book/_search
{
"query": {
"bool": {
"should": [
{"match": {"body": "elasticsearch aggs"}},
{"match": {"title": "elasticsearch aggs"}}
]
}
}
}

相关性得分计算过程是:

  1. 使用match查询"elasticsearch aggs"时,首先会被拆分为elasticsearch和aggs两个分词;
  2. 然后使用should里面的每个子句去查询同一个文档:
  3. 文档1的body和title都命中elasticsearch,满足should中的两个子句,文档得2分;
  4. 文档2的title命中elasticsearch和aggs,但是只满足了should中关于title的子句,文档得1分,
  5. 所以最后文档1的得分高于文档2,尽管文档2的匹配度更高。

使用dis_max查询

诠释: 以最佳匹配的子句的得分作为整个文档的相关性得分。

1
2
3
4
5
6
7
8
9
10
11
12
POST /book/_search
{
"query": {
"dis_max": {
"tie_breaker": 0.3,
"queries": [
{"match": {"body": "elasticsearch aggs"}},
{"match": {"title": "elasticsearch aggs"}}
]
}
}
}

那么,dis_max查询过程中文档1和文档2的得分计算过程为:

  1. 使用match查询"elasticsearch aggs"时,首先会被拆分为elasticsearch和aggs两个分词;
  2. 然后使用should里面的每个子句去查询同一个文档:
  3. 文档1的body和title都命中elasticsearch,body子句得1分,title子句也是1分,最后取两个子句中的最高分作为文档1的最后得分,即最后文档1的相关性得分为1分;
  4. 文档2的title命中elasticsearch和aggs,body没有命中任何分词,所以title子句得分为2分,body子句得分为0分,最后去body和title子句的最高分作为文档2的最后的得分,即文档2得2分;
  5. 所以最后文档2的得分高于文档1,符合我们的需求。

关于tie_breaker

下面从宏观上来讲的简单公式:

score=best_field.score × boost + other_fields × boost.score × tie_breaker

实际计算远比这个公式复杂得多,还要考虑分片因素、出现位置、文档长短等。

评分算法请参考:http://m.blog.csdn.net/article/details?id=50623948。

字段介绍参考: https://www.cnblogs.com/lovezhr/p/15094388.html

tie_breaker的参数值要同时考虑到最佳match和所有match,推荐0.1---0.4,如果是0的话,就只考虑最佳match了

总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

1
2
3
4
5
6
7
8
9
10
11
// term查询
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": "VALUE"
}
}
}
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

1
2
3
4
5
6
7
8
9
10
11
12
// range查询
GET /indexName/_search
{
"query": {
"range": {
"FIELD": {
"gte": 10, // 这里的gte代表大于等于,gt则代表大于
"lte": 20 // lte代表小于等于,lt则代表小于
}
}
}
}

示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// geo_bounding_box查询
GET /indexName/_search
{
"query": {
"bool": {
"must": [
{
"match_all": {}
}
],
"filter": [
{
"geo_bounding_box": {
"location": {
# 左上点
"top_left": {
"lat": 31.1,
"lon": 121.5
},
# 右下点
"bottom_right": {
"lat": 30.9,
"lon": 121.7
}
}
}
}
]
}
}
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

1
2
3
4
5
6
7
8
9
10
// geo_distance 查询
GET /indexName/_search
{
"query": {
"geo_distance": {
"distance": "15km", // 半径
"FIELD": "31.21,121.5" // 圆心
}
}
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
[
{
"_score" : 17.850193,
"_source" : {
"name" : "虹桥如家酒店真不错",
}
},
{
"_score" : 12.259849,
"_source" : {
"name" : "外滩如家酒店真不错",
}
},
{
"_score" : 11.91091,
"_source" : {
"name" : "迪士尼如家酒店真不错",
}
}
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一个缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = "如家"
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
GET /hotel/_search
{
"query": {
"function_score": {
"query": { .... }, // 原始查询,可以是任意条件
"functions": [ // 算分函数
{
"filter": { // 满足的条件,品牌必须是如家
"term": {
"brand": "如家"
}
},
"weight": 2 // 算分权重为2
}
],
"boost_mode": "sum" // 加权模式,求和
}
}
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{"term": {"city": "上海" }}
],
"should": [
{"term": {"brand": "皇冠假日" }},
{"term": {"brand": "华美达" }}
],
"must_not": [
{ "range": { "price": { "lte": 500 } }}
],
"filter": [
{ "range": {"score": { "gte": 45 } }}
]
}
}
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

1.6 update_by_query/delete_by_query

1.6.1 update的内容为添加的内容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
POST device_search_20200716/_update_by_query?conflicts=proceed&timeout=1d&&slices=5
{
"script": {
// labels 是一级字段 params是下边定义的,里边存放着二级字段,和二级字段的值
"source": "ctx._source.put('labels',params.labels)",
"lang": "painless",
"params":{
"labels":{
"hasSoftType":"1"
}
}
},
"query": {
"bool": {
"must": [
{
"exists": {
"field": "deviceInfo.deviceType"
}
}
],
"must_not": [
{
"term": {
"labels.hasSoftType": {
"value": "1"
}
}
}
]
}
}
}

1.6.2 update的内容为修改的内容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
POST device_search_20200716/_update_by_query?conflicts=proceed
{
"script": {
"source": "ctx._source['labels'].hasSoftType='2';",
"lang": "painless"
},
"query": {
"bool": {
"must": [
{
"exists": {
"field": "deviceInfo.deviceType"
}
}
],
"must_not": [
{
"term": {
"labels.hasSoftType": {
"value": "1"
}
}
}
]
}
}
}

1.6.3 delete_by_query

1
2
3
4
5
6
7
8
POST index_name/_delete_by_query
{
"query": { //这些是自定义查询条件,根据查询条件去批量删除
"match": {//请求体跟Search API是一样的
"message": "some message"
}
}
}

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

1
2
3
4
5
6
7
8
9
10
11
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"FIELD": "desc" // 排序字段、排序方式ASC、DESC
}
]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance" : {
"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
"order" : "asc", // 排序方式
"unit" : "km" // 排序的距离单位
}
}
]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_script": {
"type": "number",
"script": {
"source": """def val = doc['xxx'].value;
int slashIndex = val.indexOf('L');
return slashIndex;
"""
},
"order": "asc"
}
}
]
}

使用脚本进行查询, 这个查询的含义是:

  • 按照查询字段xxxL值出现的位置进行排序,出现的位置越靠前则score越高

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

1
2
3
4
5
6
7
8
9
10
11
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 0, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

1
2
3
4
5
6
7
8
9
10
11
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 990, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
GET /hotel/_search
{
"query": {
"match": {
"FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
}
},
"highlight": {
"fields": { // 指定要高亮的字段
"FIELD": {
"pre_tags": "<em>", // 用来标记高亮字段的前置标签
"post_tags": "</em>" // 用来标记高亮字段的后置标签
}
}
}
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

2.4.输出结果处理

2.4.1.格式化输出

格式化输出指让es的返回结果更具有可读性。主要有两个pretty=truev

  • http://{{ _.es_url }}/_cat/indices?v在url参数添加一个v字母可以让输出结果带有表头。比如上一节在讲es元信息查询的时候,可以看到一般都有带v字母参数,就是为了让返回结果有表头
  • http://{{ _.es_url }}/zhy-detect-2021*/_search?pretty=true。pretty参数是为了让返回的json字符串能更加可读。

2.4.2. 展平配置信息

flat_settings=true参数可以让配置信息展平,而不是一层套一层的json对象。这个参数也只有对配置信息有用,对普通返回结果没有用。
如,查询配置api:http://{{ _.es_url }}/test-20201127/_settings?flat_settings=true
返回结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
{
"test-20201127": {
"settings": {
"index.codec": "best_compression",
"index.creation_date": "1606406411188",
"index.lifecycle.name": "test-dd",
"index.mapping.total_fields.limit": "10000",
"index.merge.policy.max_merged_segment": "128m",
"index.number_of_replicas": "1",
"index.number_of_shards": "2",
"index.priority": "0",
"index.provided_name": "test-20201127",
"index.refresh_interval": "1h",
"index.routing.allocation.total_shards_per_node": "2",
"index.translog.flush_threshold_size": "1g",
"index.uuid": "lgc28_OzT6qiJjDp9r5KNA",
"index.version.created": "7090399"
}
}
}

2.4.3.返回信息过滤

在进行es查询的时候会返回很多信息,如果用惯了SQL,会发现ES咋返回这么多无用的数据呢,如果觉得有些数据无用,可以将其过滤掉,使用filter_path字段,如http://{{ _.es_url }}/test-20201220/_search?filter_path=-**.blob,-**.blob1
使用该字段过滤的时候需要注意以下细节:

  • 他的过滤是可以有层级的。比如如果只要返回hits字段,可以写filter_path=hits,如果需要返回hits字段中的hits,可以写filter_path=hits.hits,即通过点(.)的方式指定返回层级。
  • 如果hits返回的是一个数组,数组中每个元素还有source字段,还可以指定filter_path=hits.hits._source。这样返回的数组的对象只包含source字段。
  • 如果指定的过滤字段不存在不会报错,而是返回一个空对象(这很容易理解)
  • 如果需要指定过滤多个字段,多个字段直接用逗号(,)分割,就像:filter_path=hits.hits,took还可以通过通配符匹配字段,比如要匹配hits字段下任意字段下的_source字段,可以使用<filter_path=hits.*._source>来匹配
  • 如果是两个*,即**,可以匹配任意深度的路径,比如还是要查询_source字段,但是这次不知道他的具体父路径,可以使用<filter_path=**._source>来匹配
  • 上面说的所有情况都是过滤要留下的字段,而不是排除的字段。如果要排除字段,上面所有规则依然生效,只是在要排除的字段前面加一个减号(-),比如要排除任意深度下的_source子字段只需要写<filter_path=-**._source>即可,注意,前面是有减号的,没有减号表示只保留这个字段。

2.4.4.返回匹配文档数

默认情况下,如果匹配到的文档数大于10000,会以10000显示。显然这在很多情况下不能满足我们的需求。为了获取真实匹配到的文档数,可以使用track_total_hits=true参数。,如http://{{ _.es_url }}/test-2021*/_search?track_total_hits=true,返回结果如下:

1
2
3
4
5
6
...
"total": {
"value": 2843,
"relation": "eq"
}
...

2.5.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

3.RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

3.1.快速入门

我们以match_all查询为例

3.1.1.发起查询请求

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

3.1.2.解析响应

响应结果的解析:

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

3.1.3.完整代码

完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
@Test
void testMatchAll() throws IOException {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
request.source()
.query(QueryBuilders.matchAllQuery());
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);

// 4.解析响应
handleResponse(response);
}

private void handleResponse(SearchResponse response) {
// 4.解析响应
SearchHits searchHits = response.getHits();
// 4.1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 4.2.文档数组
SearchHit[] hits = searchHits.getHits();
// 4.3.遍历
for (SearchHit hit : hits) {
// 获取文档source
String json = hit.getSourceAsString();
// 反序列化
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
System.out.println("hotelDoc = " + hotelDoc);
}
}

3.1.4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

3.2.match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
@Test
void testMatch() throws IOException {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
request.source()
.query(QueryBuilders.matchQuery("all", "如家"));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);

}

3.3.精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

3.4.布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Test
void testBool() throws IOException {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.准备BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 2.2.添加term
boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
// 2.3.添加range
boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

request.source().query(boolQuery);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);

}

3.5.排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Test
void testPageAndSort() throws IOException {
// 页码,每页大小
int page = 1, size = 5;

// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
request.source().query(QueryBuilders.matchAllQuery());
// 2.2.排序 sort
request.source().sort("price", SortOrder.ASC);
// 2.3.分页 from、size
request.source().from((page - 1) * size).size(5);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);

}

3.6.高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

3.6.1.高亮请求构建

高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@Test
void testHighlight() throws IOException {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
request.source().query(QueryBuilders.matchQuery("all", "如家"));
// 2.2.高亮
request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
handleResponse(response);

}

3.6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
private void handleResponse(SearchResponse response) {
// 4.解析响应
SearchHits searchHits = response.getHits();
// 4.1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 4.2.文档数组
SearchHit[] hits = searchHits.getHits();
// 4.3.遍历
for (SearchHit hit : hits) {
// 获取文档source
String json = hit.getSourceAsString();
// 反序列化
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
// 获取高亮结果
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
if (!CollectionUtils.isEmpty(highlightFields)) {
// 根据字段名获取高亮结果
HighlightField highlightField = highlightFields.get("name");
if (highlightField != null) {
// 获取高亮值
String name = highlightField.getFragments()[0].string();
// 覆盖非高亮结果
hotelDoc.setName(name);
}
}
System.out.println("hotelDoc = " + hotelDoc);
}
}